系统中通过`cudaMallocManaged`分配但是未使用的`managed memory`成倍增加了cudaStreamSync的耗时。

  • 下面的最小单元测试代码: (不需要关心maxpool2D执行了什么计算,只是Launch kernel 执行计算而已。测试中体现的耗时差异主要在是否申请了managed memory
TEST_F(TestAlgorithm, maxPool2d_4) {
    const int N = 1, C = 1, H = 5, W = 5;
    const int kH = 2, kW = 2, strideH = 1, strideW = 1, padding = 1, dilationH = 2, dilationW = 2;
    const int Hout = (H + 2 * padding - dilationH * (kH - 1) - 1) / strideH + 1;
    const int Wout = (W + 2 * padding - dilationW * (kW - 1) - 1) / strideW + 1;
    const int kSize = N * C * H * W;
    const int kSZout = N * C * Hout * Wout;

    float *input_cpu;
    float *input;
    float *output;
    int *indices;

    input_cpu = (float *)malloc(kSize * sizeof(float));
    cudaMalloc(&input, kSize * sizeof(float));
    cudaMalloc(&output, kSZout * sizeof(float));
    cudaMalloc(&indices, kSZout * sizeof(float));

    std::generate(input_cpu, input_cpu + kSize, [i = 0.0]() mutable { return ++i; });
    cudaMemcpy(input, input_cpu, kSize * sizeof(float), cudaMemcpyHostToDevice);

    std::vector<int> allocCnts{0, 1, 5, 10, 50, 200, 500, 1000};
    // std::vector<int> allocCnts{1};
    cudaStream_t stream2_;
    ASSERT_EQ(cudaSuccess, cudaStreamCreateWithFlags(&stream2_, cudaStreamNonBlocking));
    for (int allocCnt : allocCnts) {
        printf("alloc cnt: %d\n", allocCnt);
        std::vector<void *> ptrs{};
       /*********************在这里申请 managed memory,但不会使用************************/
        for (int i = 0; i < allocCnt; i++) {
            void *ptr = nullptr;
            cudaMallocManaged(&ptr, 1024, cudaMemAttachHost);
            ptrs.push_back(ptr);
        }

        for (int j = 0; j < 3; j++) {
            auto start = std::chrono::high_resolution_clock::now();
            for (int i = 0; i < 1000; i++) {
                EXPECT_TRUE(wbe::basicop::maxPool2D(&input[0], &output[0], kSZout, &indices[0], kSZout, N, C, H, W,
                                                          kH, kW, strideH, strideW, padding, dilationH, dilationW, stream2_));
                EXPECT_EQ(cudaSuccess, cudaStreamSynchronize(stream2_));
            }

            auto end = std::chrono::high_resolution_clock::now();
            printf("high_resolution_clock time: %f ms \n", (end - start).count() / 1000000.0);
        }

        for (auto ptr : ptrs) {
            cudaFree(ptr);
        }
    }
}

编译后测试耗时结果,很奇怪,这里managed memory并未使用,而且flag是cudaMemAttachHost,随着allocCnt增多,耗时增加越明显,why ?

下面改为pinned memory 或者去掉未使用的 managed memory 的代码(其他地方不变),测试耗时每次都一样:


TEST_F(TestAlgorithm, maxPool2d_4) {
    const int N = 1, C = 1, H = 5, W = 5;
    const int kH = 2, kW = 2, strideH = 1, strideW = 1, padding = 1, dilationH = 2, dilationW = 2;
    const int Hout = (H + 2 * padding - dilationH * (kH - 1) - 1) / strideH + 1;
    const int Wout = (W + 2 * padding - dilationW * (kW - 1) - 1) / strideW + 1;
    const int kSize = N * C * H * W;
    const int kSZout = N * C * Hout * Wout;

    float *input_cpu;
    float *input;
    float *output;
    int *indices;

    input_cpu = (float *)malloc(kSize * sizeof(float));
    cudaMalloc(&input, kSize * sizeof(float));
    cudaMalloc(&output, kSZout * sizeof(float));
    cudaMalloc(&indices, kSZout * sizeof(float));

    std::generate(input_cpu, input_cpu + kSize, [i = 0.0]() mutable { return ++i; });
    cudaMemcpy(input, input_cpu, kSize * sizeof(float), cudaMemcpyHostToDevice);

    std::vector<int> allocCnts{0, 1, 5, 10, 50, 200, 500, 1000};
    // std::vector<int> allocCnts{1};
    cudaStream_t stream2_;
    ASSERT_EQ(cudaSuccess, cudaStreamCreateWithFlags(&stream2_, cudaStreamNonBlocking));
    for (int allocCnt : allocCnts) {
        printf("alloc cnt: %d\n", allocCnt);
        std::vector<void *> ptrs{};
       /***********************将这里改为 pinned memory,未使用的内存,能明显降低耗时***************************/
        for (int i = 0; i < allocCnt; i++) {
            void *ptr = nullptr;
            cudaMallocHost(&ptr, 1024);
            ptrs.push_back(ptr);
        }

        for (int j = 0; j < 3; j++) {
            auto start = std::chrono::high_resolution_clock::now();
            for (int i = 0; i < 1000; i++) {
                EXPECT_TRUE(wbe::basicop::maxPool2D(&input[0], &output[0], kSZout, &indices[0], kSZout, N, C, H, W,
                                                          kH, kW, strideH, strideW, padding, dilationH, dilationW, stream2_));
                EXPECT_EQ(cudaSuccess, cudaStreamSynchronize(stream2_));
            }

            auto end = std::chrono::high_resolution_clock::now();
            printf("high_resolution_clock time: %f ms \n", (end - start).count() / 1000000.0);
        }

        for (auto ptr : ptrs) {
            cudaFreeHost(ptr);
        }
    }
}

  • 疑惑: 谁能帮忙否解答一下managed meoroy 对cudaStreamSync以及Launch kernel 耗时的影响,为什么系统中未使用的managed memory 会对 其他kernel 的操作产生负面影响。(我测试了将这些managed meory 使用 cudaStreamAttachMemAsync 绑定到与stream2_不同的流上,结果仍然如此)

  • 系统环境:

root@tegra-ubuntu:/usr/local/cuda/samples/bin/aarch64/linux/release# cat /etc/nv_version
DRIVE OS: 6.0.6.0
TensorRT: 8.5.10
CUDA: 11.4.20
CUDNN: 8.6.0
DRIVEWORKS: 5.10
root@tegra-ubuntu:/usr/local/cuda/samples/bin/aarch64/linux/release# ./deviceQuery
./deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "Orin"
  CUDA Driver Version / Runtime Version          11.8 / 11.4
  CUDA Capability Major/Minor version number:    8.7
  Total amount of global memory:                 10803 MBytes (11327631360 bytes)
  (016) Multiprocessors, (128) CUDA Cores/MP:    2048 CUDA Cores
  GPU Max Clock rate:                            1275 MHz (1.27 GHz)
  Memory Clock rate:                             1275 Mhz
  Memory Bus Width:                              128-bit
  L2 Cache Size:                                 4194304 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total shared memory per multiprocessor:        167936 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  1536
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 2 copy engine(s)
  Run time limit on kernels:                     No
  Integrated GPU sharing Host Memory:            Yes
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  Device supports Unified Addressing (UVA):      Yes
  Device supports Managed Memory:                Yes
  Device supports Compute Preemption:            Yes
  Supports Cooperative Kernel Launch:            Yes
  Supports MultiDevice Co-op Kernel Launch:      Yes
  Device PCI Domain ID / Bus ID / location ID:   0 / 0 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.8, CUDA Runtime Version = 11.4, NumDevs = 1

Driveworks是汽车平台,请去汽车相关的论坛提问Autonomous Vehicles - NVIDIA Developer Forums

另外, CUDA for Tegra 这个文档或许对你有帮助。