第二期有奖讨论:CUDA你知道多少

CUDA是NVIDIA近来力推的东西,简单的说,CUDA可以认为是一种以C语言为基础的平台,主要是利用显卡强大的浮点运算能力来完成以往需要CPU 才可以完成的任务。CPU的特点是什么都能干,但不够专,运算能力不高,而显卡则很专,专门运算图形方面的浮点运算,能力比CPU强10倍以上。但显卡的应用范围狭窄,所以NVIDIA为了让它的显卡在电脑中有更高的地位,就搞了这么个CUDA。
想用CUDA,必须是NVIDIA的显卡,而且要是GEFORCE 8以后的显卡。平常没什么用,只是在转换视频格式,以及看高清时有点作用。暂时CUDA的作用范围仍然比较狭窄,就看NVIDIA能把它如何发展了。

CUDA(Compute Unified Device Architecture),显卡厂商NVidia推出的运算平台。
随着显卡的发展,GPU越来越强大,而且GPU为显示图像做了优化。在计算上已经超越了通用的CPU。如此强大的芯片如果只是作为显卡就太浪费了,因此N卡厂商推出CUDA,让显卡可以用于图像计算以外的目的。
目前只有G80平台的N卡才能使用CUDA,工具集的核心是一个C语言编译器。G80中拥有128个单独的ALU,因此非常适合并行计算,而且数值计算的速度远远优于CPU。
CUDA的SDK中的编译器和开发平台支持Windows、Linux系统,可以与Visual Studio2003集成在一起。
目前这项技术处在起步阶段,仅支持32位系统,编译器不支持双精度数据等问题要在晚些时候解决。当然还有就是Geforce8系列显卡高昂的价格问题了。
CUDA(Compute Unified Device Architecture)是一个新的基础架构,这个架构可以使用GPU来解决商业、工业以及科学方面的复杂计算问题。它是一个完整的GPGPU解决方案,提供了硬件的直接访问接口,而不必像传统方式一样必须依赖图形API接口来实现GPU的访问。在架构上采用了一种全新的计算体系结构来使用GPU提供的硬件资源,从而给大规模的数据计算应用提供了一种比CPU更加强大的计算能力。CUDA采用C语言作为编程语言提供大量的高性能计算指令开发能力,使开发者能够在GPU的强大计算能力的基础上建立起一种效率更高的密集数据计算解决方案。
从CUDA体系结构的组成来说,包含了三个部分:开发库、运行期环境和驱动(表2)。
开发库是基于CUDA技术所提供的应用开发库。目前CUDA的1.1版提供了两个标准的数学运算库——CUFFT(离散快速傅立叶变换)和CUBLAS(离散基本线性计算)的实现。这两个数学运算库所解决的是典型的大规模的并行计算问题,也是在密集数据计算中非常常见的计算类型。开发人员在开发库的基础上可以快速、方便的建立起自己的计算应用。此外,开发人员也可以在CUDA的技术基础上实现出更多的开发库。

CUDA(Compute Unified Device Architecture),
CUDA的出现,使一直孤军奋战的CPU终于有了工作伙伴,提高运行速度不再是无限压榨CPU的最高速度,在几百个辛勤的“小弟”的帮助下,CPU从抹桌洗碗的孤单打工族,摇身一变成了部门总管,哪里有工作,指挥小弟们一拥而上。有了CUDA,几乎已到极限的运行速度再提高几百倍不是梦,计算机业似乎踏入了一个全新的领域。
但对于这种速度的提升,前途却不是那么坦荡,开发人员现在可以用C语言编写程序,利用GPU来协助CPU处理数据,听起来似乎万事俱备,但其复杂度却不是C语言编写程序可比的,CUDA编程语言几百页的说明要烂熟于心,这已经不是易事,缺乏专业的开发工具,使编程的第一步难上加难,不管是WINDOWS还是LINUX,在安装了对应的驱动,SDK,工具包之后,还要配合别的软件以及修改N多注册表项,一个字节的修改错误导致的出错提示,让初学者们已经搜尽百度。高手们不断的写出模式包,安装教程,说明,却又被软件版本不断淘洗,某个模式包对应某个版本,某种修改对应某个版本的工具包……
用CUDA编写程序时,又被各种数字的乘法搞晕,栅格中的几行几列,乘以几加几,全部要用编程员的大脑计算,检验起来更是头大如斗,从LOCAL到SHARED,各种不同的缓存速度又不同,可以处理的数据也不同……
开发环境的简化,需要大量程序员的努力,但这种大量努力的前提,是GPU技术的需求性的提高。利用GPU提高运算速度是可行的,但必须是大量单调却统一的计算工作,再分配给所有GPU并发执行,所以提速几百倍只限于一部分工作,而且需要很好的统筹安排,这也要耗费CPU的传统能力和程序员的脑细胞。

CUDA(Compute Unified Device Architecture)是一个新的基础架构,这个架构可以使用GPU来解决商业、工业以及科学方面的复杂计算问题。它是一个完整的GPGPU解决方案,提供了硬件的直接访问接口,而不必像传统方式一样必须依赖图形API接口来实现GPU的访问。在架构上采用了一种全新的计算体系结构来使用GPU提供的硬件资源,从而给大规模的数据计算应用提供了一种比CPU更加强大的计算能力。CUDA采用C语言作为编程语言提供大量的高性能计算指令开发能力,使开发者能够在GPU的强大计算能力的基础上建立起一种效率更高的密集数据计算解决方案。
从CUDA体系结构的组成来说,包含了三个部分:开发库、运行期环境和驱动(表2)。
开发库是基于CUDA技术所提供的应用开发库。目前CUDA的1.1版提供了两个标准的数学运算库——CUFFT(离散快速傅立叶变换)和CUBLAS(离散基本线性计算)的实现。这两个数学运算库所解决的是典型的大规模的并行计算问题,也是在密集数据计算中非常常见的计算类型。开发人员在开发库的基础上可以快速、方便的建立起自己的计算应用。此外,开发人员也可以在CUDA的技术基础上实现出更多的开发库。
运行期环境提供了应用开发接口和运行期组件,包括基本数据类型的定义和各类计算、类型转换、内存管理、设备访问和执行调度等函数。基于CUDA开发的程序代码在实际执行中分为两种,一种是运行在CPU上的宿主代码(Host Code),一种是运行在GPU上的设备代码(Device Code)。不同类型的代码由于其运行的物理位置不同,能够访问到的资源不同,因此对应的运行期组件也分为公共组件、宿主组件和设备组件三个部分,基本上囊括了所有在GPGPU开发中所需要的功能和能够使用到的资源接口,开发人员可以通过运行期环境的编程接口实现各种类型的计算。
由于目前存在着多种GPU版本的NVIDIA显卡,不同版本的GPU之间都有不同的差异,因此驱动部分基本上可以理解为是CUDA-enable的GPU的设备抽象层,提供硬件设备的抽象访问接口。CUDA提供运行期环境也是通过这一层来实现各种功能的。目前基于CUDA开发的应用必须有NVIDIA CUDA-enable的硬件支持,NVIDIA公司GPU运算事业部总经理Andy Keane在一次活动中表示:一个充满生命力的技术平台应该是开放的,CUDA未来也会向这个方向发展。由于CUDA的体系结构中有硬件抽象层的存在,因此今后也有可能发展成为一个通用的GPGPU标准接口,兼容不同厂商的GPU产品

CUDA的出现,使一直孤军奋战的CPU终于有了工作伙伴,提高运行速度不再是无限压榨CPU的最高速度,在几百个辛勤的“小弟”的帮助下,CPU从抹桌洗碗的孤单打工族,摇身一变成了部门总管,哪里有工作,指挥小弟们一拥而上。有了CUDA,几乎已到极限的运行速度再提高几百倍不是梦,计算机业似乎踏入了一个全新的领域。
但对于这种速度的提升,前途却不是那么坦荡,开发人员现在可以用C语言编写程序,利用GPU来协助CPU处理数据,听起来似乎万事俱备,但其复杂度却不是C语言编写程序可比的,CUDA编程语言几百页的说明要烂熟于心,这已经不是易事,缺乏专业的开发工具,使编程的第一步难上加难,不管是WINDOWS还是LINUX,在安装了对应的驱动,SDK,工具包之后,还要配合别的软件以及修改N多注册表项,一个字节的修改错误导致的出错提示,让初学者们已经搜尽百度。高手们不断的写出模式包,安装教程,说明,却又被软件版本不断淘洗,某个模式包对应某个版本,某种修改对应某个版本的工具包……
用CUDA编写程序时,又被各种数字的乘法搞晕,栅格中的几行几列,乘以几加几,全部要用编程员的大脑计算,检验起来更是头大如斗,从LOCAL到SHARED,各种不同的缓存速度又不同,可以处理的数据也不同……
开发环境的简化,需要大量程序员的努力,但这种大量努力的前提,是GPU技术的需求性的提高。利用GPU提高运算速度是可行的,但必须是大量单调却统一的计算工作,再分配给所有GPU并发执行,所以提速几百倍只限于一部分工作,而且需要很好的统筹安排,这也要耗费CPU的传统能力和程序员的脑细胞。
然而目前来讲,GPU并不是电脑的“制式武器”,只有NVIDIA的显卡支持此种技术,这使得有些初学者不得不用CPU来模拟GPU的功能,性能方面的数据完全无法参考。打开市场,让NVIDIA显卡成为电脑内必要的组成部分,成了一切进展的前提,由此推断,NVIDIA与两大CPU厂商合作,使其集成在主板上的可能性是很高的,也有可能与笔记本厂商合作,使大部分笔记本带有NVIDIA的显卡,使之有CUDA开发的可能。
总而言之,提高市场占有度,才能提高CUDA开发的可能性和必要性,需求量有了,才能推动开发环境的简化,编程员们才能更快的使用GPU进行大规模的软件开发。

CUDA(Compute Unified Device Architecture)是一个新的基础架构,这个架构可以使用GPU来解决商业、工业以及科学方面的复杂计算问题。它是一个完整的GPGPU解决方案,提供了硬件的直接访问接口,而不必像传统方式一样必须依赖图形API接口来实现GPU的访问。在架构上采用了一种全新的计算体系结构来使用GPU提供的硬件资源,从而给大规模的数据计算应用提供了一种比CPU更加强大的计算能力。CUDA采用C语言作为编程语言提供大量的高性能计算指令开发能力,使开发者能够在GPU的强大计算能力的基础上建立起一种效率更高的密集数据计算解决方案。
从CUDA体系结构的组成来说,包含了三个部分:开发库、运行期环境和驱动(表2)。
开发库是基于CUDA技术所提供的应用开发库。目前CUDA的1.1版提供了两个标准的数学运算库——CUFFT(离散快速傅立叶变换)和CUBLAS(离散基本线性计算)的实现。这两个数学运算库所解决的是典型的大规模的并行计算问题,也是在密集数据计算中非常常见的计算类型。开发人员在开发库的基础上可以快速、方便的建立起自己的计算应用。此外,开发人员也可以在CUDA的技术基础上实现出更多的开发库。
运行期环境提供了应用开发接口和运行期组件,包括基本数据类型的定义和各类计算、类型转换、内存管理、设备访问和执行调度等函数。基于CUDA开发的程序代码在实际执行中分为两种,一种是运行在CPU上的宿主代码(Host Code),一种是运行在GPU上的设备代码(Device Code)。不同类型的代码由于其运行的物理位置不同,能够访问到的资源不同,因此对应的运行期组件也分为公共组件、宿主组件和设备组件三个部分,基本上囊括了所有在GPGPU开发中所需要的功能和能够使用到的资源接口,开发人员可以通过运行期环境的编程接口实现各种类型的计算。
由于目前存在着多种GPU版本的NVIDIA显卡,不同版本的GPU之间都有不同的差异,因此驱动部分基本上可以理解为是CUDA-enable的GPU的设备抽象层,提供硬件设备的抽象访问接口。CUDA提供运行期环境也是通过这一层来实现各种功能的。目前基于CUDA开发的应用必须有NVIDIA CUDA-enable的硬件支持,NVIDIA公司GPU运算事业部总经理Andy Keane在一次活动中表示:一个充满生命力的技术平台应该是开放的,CUDA未来也会向这个方向发展。由于CUDA的体系结构中有硬件抽象层的存在,因此今后也有可能发展成为一个通用的GPGPU标准接口,兼容不同厂商的GPU产品

CUDA(Compute Unified Device Architecture),显卡厂商NVidia推出的运算平台。
CUDa是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。开发人员现在可以使用C语言来为CUDA™架构编写程序,C语言是应用最广泛的一种高级编程语言。所编写出的程序于是就可以在支持CUDA™的处理器上以超高性能运行。 将来还会支持其它语言,包括FORTRAN以及C++。
随着显卡的发展,GPU越来越强大,而且GPU为显示图像做了优化。在计算上已经超越了通用的CPU。如此强大的芯片如果只是作为显卡就太浪费了,因此NVidia推出CUDA,让显卡可以用于图像计算以外的目的。
目前只有G80、G92、G94和GT200平台的NVidia显卡才能使用CUDA,工具集的核心是一个C语言编译器。G80中拥有128个单独的ALU,因此非常适合并行计算,而且数值计算的速度远远优于CPU。
CUDA的SDK中的编译器和开发平台支持Windows、Linux系统,可以与Visual Studio2005集成在一起。
Geforce8CUDA(Compute Unified Device Architecture)是一个新的基础架构,这个架构可以使用GPU来解决商业、工业以及科学方面的复杂计算问题。它是一个完整的GPGPU解决方案,提供了硬件的直接访问接口,而不必像传统方式一样必须依赖图形API接口来实现GPU的访问。在架构上采用了一种全新的计算体系结构来使用GPU提供的硬件资源,从而给大规模的数据计算应用提供了一种比CPU更加强大的计算能力。CUDA采用C语言作为编程语言提供大量的高性能计算指令开发能力,使开发者能够在GPU的强大计算能力的基础上建立起一种效率更高的密集数据计算解决方案。
从CUDA体系结构的组成来说,包含了三个部分:开发库、运行期环境和驱动(表2)。
开发库是基于CUDA技术所提供的应用开发库。目前CUDA的1.1版提供了两个标准的数学运算库——CUFFT(离散快速傅立叶变换)和 CUBLAS(离散基本线性计算)的实现。这两个数学运算库所解决的是典型的大规模的并行计算问题,也是在密集数据计算中非常常见的计算类型。开发人员在开发库的基础上可以快速、方便的建立起自己的计算应用。此外,开发人员也可以在CUDA的技术基础上实现出更多的开发库。
运行期环境提供了应用开发接口和运行期组件,包括基本数据类型的定义和各类计算、类型转换、内存管理、设备访问和执行调度等函数。基于CUDA开发的程序代码在实际执行中分为两种,一种是运行在CPU上的宿主代码(Host Code),一种是运行在GPU上的设备代码(Device Code)。不同类型的代码由于其运行的物理位置不同,能够访问到的资源不同,因此对应的运行期组件也分为公共组件、宿主组件和设备组件三个部分,基本上囊括了所有在GPGPU开发中所需要的功能和能够使用到的资源接口,开发人员可以通过运行期环境的编程接口实现各种类型的计算。
由于目前存在着多种GPU版本的NVidia显卡,不同版本的GPU之间都有不同的差异,因此驱动部分基本上可以理解为是CUDA-enable的 GPU的设备抽象层,提供硬件设备的抽象访问接口。CUDA提供运行期环境也是通过这一层来实现各种功能的。目前基于CUDA开发的应用必须有 NVIDIA CUDA-enable的硬件支持,NVidia公司GPU运算事业部总经理Andy Keane在一次活动中表示:一个充满生命力的技术平台应该是开放的,CUDA未来也会向这个方向发展。由于CUDA的体系结构中有硬件抽象层的存在,因此今后也有可能发展成为一个通用的GPGPU标准接口,兼容不同厂商的GPU产品

从CUDA体系结构的组成来说,包含了三个部分:开发库、运行期环境和驱动(表2)。
开发库是基于CUDA技术所提供的应用开发库。目前CUDA的1.1版提供了两个标准的数学运算库——CUFFT(离散快速傅立叶变换)和CUBLAS(离散基本线性计算)的实现。这两个数学运算库所解决的是典型的大规模的并行计算问题,也是在密集数据计算中非常常见的计算类型。开发人员在开发库的基础上可以快速、方便的建立起自己的计算应用。此外,开发人员也可以在CUDA的技术基础上实现出更多的开发库。
运行期环境提供了应用开发接口和运行期组件,包括基本数据类型的定义和各类计算、类型转换、内存管理、设备访问和执行调度等函数。基于CUDA开发的程序代码在实际执行中分为两种,一种是运行在CPU上的宿主代码(Host Code),一种是运行在GPU上的设备代码(Device Code)。不同类型的代码由于其运行的物理位置不同,能够访问到的资源不同,因此对应的运行期组件也分为公共组件、宿主组件和设备组件三个部分,基本上囊括了所有在GPGPU开发中所需要的功能和能够使用到的资源接口,开发人员可以通过运行期环境的编程接口实现各种类型的计算。
由于目前存在着多种GPU版本的NVIDIA显卡,不同版本的GPU之间都有不同的差异,因此驱动部分基本上可以理解为是CUDA-enable的GPU的设备抽象层,提供硬件设备的抽象访问接口。CUDA提供运行期环境也是通过这一层来实现各种功能的。目前基于CUDA开发的应用必须有NVIDIA CUDA-enable的硬件支持,NVIDIA公司GPU运算事业部总经理Andy Keane在一次活动中表示:一个充满生命力的技术平台应该是开放的,CUDA未来也会向这个方向发展。由于CUDA的体系结构中有硬件抽象层的存在,因此今后也有可能发展成为一个通用的GPGPU标准接口,兼容不同厂商的GPU产品

CUDA(Compute Unified Device Architecture),显卡厂商NVidia推出的运算平台。
CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。开发人员现在可以使用C语言来为CUDA™架构编写程序,C语言是应用最广泛的一种高级编程语言。所编写出的程序于是就可以在支持CUDA™的处理器上以超高性能运行。 将来还会支持其它语言,包括FORTRAN以及C++。
随着显卡的发展,GPU越来越强大,而且GPU为显示图像做了优化。在计算上已经超越了通用的CPU。如此强大的芯片如果只是作为显卡就太浪费了,因此NVidia推出CUDA,让显卡可以用于图像计算以外的目的。
目前只有G80、G92、G94和GT200平台的NVidia显卡才能使用CUDA,工具集的核心是一个C语言编译器。G80中拥有128个单独的ALU,因此非常适合并行计算,而且数值计算的速度远远优于CPU。
CUDA的SDK中的编译器和开发平台支持Windows、Linux系统,可以与Visual Studio2005集成在一起。
Geforce8CUDA(Compute Unified Device Architecture)是一个新的基础架构,这个架构可以使用GPU来解决商业、工业以及科学方面的复杂计算问题。它是一个完整的GPGPU解决方案,提供了硬件的直接访问接口,而不必像传统方式一样必须依赖图形API接口来实现GPU的访问。在架构上采用了一种全新的计算体系结构来使用GPU提供的硬件资源,从而给大规模的数据计算应用提供了一种比CPU更加强大的计算能力。CUDA采用C语言作为编程语言提供大量的高性能计算指令开发能力,使开发者能够在GPU的强大计算能力的基础上建立起一种效率更高的密集数据计算解决方案。
从CUDA体系结构的组成来说,包含了三个部分:开发库、运行期环境和驱动(表2)。
开发库是基于CUDA技术所提供的应用开发库。目前CUDA的1.1版提供了两个标准的数学运算库——CUFFT(离散快速傅立叶变换)和CUBLAS(离散基本线性计算)的实现。这两个数学运算库所解决的是典型的大规模的并行计算问题,也是在密集数据计算中非常常见的计算类型。开发人员在开发库的基础上可以快速、方便的建立起自己的计算应用。此外,开发人员也可以在CUDA的技术基础上实现出更多的开发库。
运行期环境提供了应用开发接口和运行期组件,包括基本数据类型的定义和各类计算、类型转换、内存管理、设备访问和执行调度等函数。基于CUDA开发的程序代码在实际执行中分为两种,一种是运行在CPU上的宿主代码(Host Code),一种是运行在GPU上的设备代码(Device Code)。不同类型的代码由于其运行的物理位置不同,能够访问到的资源不同,因此对应的运行期组件也分为公共组件、宿主组件和设备组件三个部分,基本上囊括了所有在GPGPU开发中所需要的功能和能够使用到的资源接口,开发人员可以通过运行期环境的编程接口实现各种类型的计算。
由于目前存在着多种GPU版本的NVidia显卡,不同版本的GPU之间都有不同的差异,因此驱动部分基本上可以理解为是CUDA-enable的GPU的设备抽象层,提供硬件设备的抽象访问接口。CUDA提供运行期环境也是通过这一层来实现各种功能的。目前基于CUDA开发的应用必须有NVIDIA CUDA-enable的硬件支持,NVidia公司GPU运算事业部总经理Andy Keane在一次活动中表示:一个充满生命力的技术平台应该是开放的,CUDA未来也会向这个方向发展。由于CUDA的体系结构中有硬件抽象层的存在,因此今后也有可能发展成为一个通用的GPGPU标准接口,兼容不同厂商的GPU产品

CUDA一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。 开发人员可以使用C语言来为CUDA架构编写程序。 将来还会支持其它语言,包括FORTRAN以及C++。

知道的,也仅限此处了

CUDA(Compute Unified Device Architecture)
CUDA的出现,使一直孤军奋战的CPU终于有了工作伙伴,提高运行速度不再是无限压榨CPU的最高速度,在几百个辛勤的“小弟”的帮助下,CPU从抹桌洗碗的孤单打工族,摇身一变成了部门总管,哪里有工作,指挥小弟们一拥而上。有了CUDA,几乎已到极限的运行速度再提高几百倍不是梦,计算机业似乎踏入了一个全新的领域。
但对于这种速度的提升,前途却不是那么坦荡,开发人员现在可以用C语言编写程序,利用GPU来协助CPU处理数据,听起来似乎万事俱备,但其复杂度却不是C语言编写程序可比的,CUDA编程语言几百页的说明要烂熟于心,这已经不是易事,缺乏专业的开发工具,使编程的第一步难上加难,不管是WINDOWS还是LINUX,在安装了对应的驱动,SDK,工具包之后,还要配合别的软件以及修改N多注册表项,一个字节的修改错误导致的出错提示,让初学者们已经搜尽百度。高手们不断的写出模式包,安装教程,说明,却又被软件版本不断淘洗,某个模式包对应某个版本,某种修改对应某个版本的工具包……
用CUDA编写程序时,又被各种数字的乘法搞晕,栅格中的几行几列,乘以几加几,全部要用编程员的大脑计算,检验起来更是头大如斗,从LOCAL到SHARED,各种不同的缓存速度又不同,可以处理的数据也不同……
开发环境的简化,需要大量程序员的努力,但这种大量努力的前提,是GPU技术的需求性的提高。利用GPU提高运算速度是可行的,但必须是大量单调却统一的计算工作,再分配给所有GPU并发执行,所以提速几百倍只限于一部分工作,而且需要很好的统筹安排,这也要耗费CPU的传统能力和程序员的脑细胞。

CUDA(Compute Unified Device Architecture),显卡厂商NVidia推出的运算平台。
随着显卡的发展,GPU越来越强大,而且GPU为显示图像做了优化。在计算上已经超越了通用的CPU。如此强大的芯片如果只是作为显卡就太浪费了,因此N卡厂商推出CUDA,让显卡可以用于图像计算以外的目的。
目前只有G80平台的N卡才能使用CUDA,工具集的核心是一个C语言编译器。G80中拥有128个单独的ALU,因此非常适合并行计算,而且数值计算的速度远远优于CPU。
CUDA的SDK中的编译器和开发平台支持Windows、Linux系统,可以与Visual Studio2003集成在一起。
目前这项技术处在起步阶段,仅支持32位系统,编译器不支持双精度数据等问题要在晚些时候解决。当然还有就是Geforce8系列显卡高昂的价格问题了。
CUDA(Compute Unified Device Architecture)是一个新的基础架构,这个架构可以使用GPU来解决商业、工业以及科学方面的复杂计算问题。它是一个完整的GPGPU解决方案,提供了硬件的直接访问接口,而不必像传统方式一样必须依赖图形API接口来实现GPU的访问。在架构上采用了一种全新的计算体系结构来使用GPU提供的硬件资源,从而给大规模的数据计算应用提供了一种比CPU更加强大的计算能力。CUDA采用C语言作为编程语言提供大量的高性能计算指令开发能力,使开发者能够在GPU的强大计算能力的基础上建立起一种效率更高的密集数据计算解决方案。
从CUDA体系结构的组成来说,包含了三个部分:开发库、运行期环境和驱动(表2)。
开发库是基于CUDA技术所提供的应用开发库。目前CUDA的1.1版提供了两个标准的数学运算库——CUFFT(离散快速傅立叶变换)和CUBLAS(离散基本线性计算)的实现。这两个数学运算库所解决的是典型的大规模的并行计算问题,也是在密集数据计算中非常常见的计算类型。开发人员在开发库的基础上可以快速、方便的建立起自己的计算应用。此外,开发人员也可以在CUDA的技术基础上实现出更多的开发库。
运行期环境提供了应用开发接口和运行期组件,包括基本数据类型的定义和各类计算、类型转换、内存管理、设备访问和执行调度等函数。基于CUDA开发的程序代码在实际执行中分为两种,一种是运行在CPU上的宿主代码(Host Code),一种是运行在GPU上的设备代码(Device Code)。不同类型的代码由于其运行的物理位置不同,能够访问到的资源不同,因此对应的运行期组件也分为公共组件、宿主组件和设备组件三个部分,基本上囊括了所有在GPGPU开发中所需要的功能和能够使用到的资源接口,开发人员可以通过运行期环境的编程接口实现各种类型的计算。
由于目前存在着多种GPU版本的NVIDIA显卡,不同版本的GPU之间都有不同的差异,因此驱动部分基本上可以理解为是CUDA-enable的GPU的设备抽象层,提供硬件设备的抽象访问接口。CUDA提供运行期环境也是通过这一层来实现各种功能的。目前基于CUDA开发的应用必须有NVIDIA CUDA-enable的硬件支持,NVIDIA公司GPU运算事业部总经理Andy Keane在一次活动中表示:一个充满生命力的技术平台应该是开放的,CUDA未来也会向这个方向发展。由于CUDA的体系结构中有硬件抽象层的存在,因此今后也有可能发展成为一个通用的GPGPU标准接口,兼容不同厂商的GPU产品

CUDA(Compute Unified Device Architecture)是一个新的基础架构,这个架构可以使用GPU来解决商业、工业以及科学方面的复杂计算问题。它是一个完整的GPGPU解决方案,提供了硬件的直接访问接口,而不必像传统方式一样必须依赖图形API接口来实现GPU的访问。在架构上采用了一种全新的计算体系结构来使用GPU提供的硬件资源,从而给大规模的数据计算应用提供了一种比CPU更加强大的计算能力。CUDA采用C语言作为编程语言提供大量的高性能计算指令开发能力,使开发者能够在GPU的强大计算能力的基础上建立起一种效率更高的密集数据计算解决方案。
CUDA特别适用于中等粒度的并行计算,比较适合的领域包括:有限元,信号处理,神经网络以及人工智能。
开头所说的用于病毒扫描,我觉得更合适的说法是病毒特征码扫描,很适合CUDA的场景(这个其实和GFW差不多,GFW今后可能是CUDA单一的最大用户)
CUDA 的核心有三个重要抽象概念: 线程组层次结构、共享存储器、屏蔽同步( barrier synchronization),可轻松将其作为C 语言的最小扩展级公开给程序员。
CUDA 软件堆栈由几层组成,一个硬件驱动程序,一个应用程序编程接口(API)和它的Runtime, 还有二个高级的通用数学库,CUFFT 和CUBLAS。硬件被设计成支持轻量级的驱动和Runtime 层面,因而提高性能。

CUDA是NVIDIA近来力推的东西,简单的说,CUDA可以认为是一种以C语言为基础的平台,主要是利用显卡强大的浮点运算能力来完成以往需要CPU才可以完成的任务。CPU的特点是什么都能干,但不够专,运算能力不高,而显卡则很专,专门运算图形方面的浮点运算,能力比CPU强10倍以上。但显卡的应用范围狭窄,所以NVIDIA为了让它的显卡在电脑中有更高的地位,就搞了这么个CUDA。
想用CUDA,必须是NVIDIA的显卡,而且要是GEFORCE 8以后的显卡。平常没什么用,只是在转换视频格式,以及看高清时有点作用。暂时CUDA的作用范围仍然比较狭窄,就看NVIDIA能把它如何发展了。

CUDA 的软件环境使得开发者能够使用C作为高级语言来进行CUDA编程。如图1-3所示,其他的语言或者应用程序接口(API)在未来也会被支持,诸如 FORTRAN, C++, OpenCL, 以及 Direct3D 11 Compute。
多核 CPU 和多核 GPU 的出现意味着并行系统已成为主流处理器芯片。此外,根据摩尔定律,其并行性将不断扩展。这带来了严峻的挑战,我们需要开发出可透明地扩展并行性的应用软件,以便利用日益增加的处理器内核数量,这种情况正如 3D 图形应用程序透明地扩展其并行性以支持配备各种数量的内核的多核 GPU。

CUDA 是一种并行编程模型和软件环境,用于应对这种挑战,同时保证熟悉 C 语言等标准编程语言的程序员能够迅速掌握 CUDA。

CUDA 的核心有三个重要抽象概念:线程组层次结构、共享存储器、屏蔽同步(barrier synchronization),可轻松将其作为 C 语言的最小扩展级公开给程序员。

CUDA(Compute Unified Device Architecture),是显卡厂商NVidia推出的运算平台。
随着显卡的发展,GPU越来越强大,而且GPU为显示图像做了优化,在计算上已经超越了通用的CPU,如此强大的芯片如果只是作为显卡就太浪费了,因此NVidia推出CUDA,让显卡可以用于图像计算以外的目的。
由于GPU的特点是处理密集型数据和并行数据计算,因此CUDA非常适合需要大规模并行计算的领域,目前CUDA除了可以用C语言开发,也已经提供FORTRAN的应用接口,未来可以预计CUDA会支持C++、Java、Python等各类语言,可广泛的应用在图形动画、科学计算、地质、生物、物理模拟等领域。简单的说,CUDA可以认为是一种以C语言为基础的平台,主要是利用显卡强大的浮点运算能力来完成以往需要CPU才可以完成的任务。CPU的特点是什么都能干,但不够专,运算能力不高,而显卡则很专,专门运算图形方面的浮点运算,能力比CPU强10倍以上。但显卡的应用范围狭窄,所以NVIDIA为了让它的显卡在电脑中有更高的地位,就搞了这么个CUDA。
想用CUDA,必须是NVIDIA的显卡,而且要是GEFORCE 8以后的显卡。平常没什么用,只是在转换视频格式,以及看高清时有点作用。暂时CUDA的作用范围仍然比较狭窄,就看NVIDIA能把它如何发展了。

CUDA(Compute Unified Device Architecture),显卡厂商NVidia推出的运算平台。

不断简化的运算,以后对IT人员不知是好是坏啊

呵呵,大家很有见解~

CUDA只是建立在GPGPU上的标准接口之一,还有OpenCL/DirectCompute。其中OpenCL是开放标准,我还是比较看好开放的东西~尽管他技术上并不那么先进。

计算已经不是CPU的专利,Cuda能够做得更好

CPU如果不在所长的计算上有所突破,恐怕会有被cuda取代的趋势